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Anomalous Diffusion in a Random Velocity Field

B. Gaveau' and L. S. Schulman®
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We construct diffusions in random velocity fields which present anomalous
superdiffusive behavior. The mean square displacement can be made to have
any power law ¢ for 1 <« < 2. Higher moments and characteristic functions are
also investigated.
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1. INTRODUCTION

In this note, we extend a model of anomalous diffusion in a disordered
lattice introduced in ref. 1 (see also refs. 2 and 3). Let us briefly recall the
result obtained in refs. 1 and 2: we have described a random motion of a
particle in a d-dimensional disordered lattice, starting from 0, and we found
that the mean square displacement at time »n was given by

n? if d=2
(rP(n)y ~<{nlogn if d=3
n if d=4

Our purpose is to give a continuous version of a more general model so
that we can obtain any exponent 1 <o <2 with

(rA(n)> ~n®

and also to compute higher moments of the displacement. It is in general
rather difficult to obtain rigorous analytical results for motions of particle
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in a disordered medium, due to the non-Markovian character of such
motions. Many authors have used a renormalization group analysis,*®
but this is not a completely rigorous approach. The class of models presented
below can be rigorously treated. Other rigorous scaling results in the discrete
case have also been obtained in ref. 10.

A concrete example of this class of model is the diffusion of a fluid in
a stratified medium. Each layer of the medium has its own transport
property inducing a different velocity field of the fluid parallel to the layer.
Moreover, there is a pure diffusion between layers.®*

Another example of this class of model is the diffusive transport of
particles in a turbulent fluid. In this case one has a statistical distribution
of a velocity field which drives a passive system of particles. The diffusion
is enhanced and gives the 4/3 law proposed by Richardson.?) The
moments of the scalar field were computed exactly by Kraichnan? in the
case where the velocity field is white noise in time.

2. DESCRIPTION OF THE MODEL

We define the model in a (d+ 1)-dimensional space R**! with coor-
dinates (x, y), where x is the first coordinate and y = (y,,.., y,) are the last
d coordinates. On the y-space, we define a random field w(y). Let us
denote by (x(¢), y(¢)) the position of the particle at time#: y(¢) is a
d-dimensional Brownian motion starting from 0 at r=0. The particle
moves with velocity w(y(7)) in the x direction, so that

x(0) = [ w(3() ds (1)

We define

{o(y)>=0

2

Co(y)o(y')>=o(y—y1) ?

where {---) is the average over the stochastic state of the field w and ¢(r)

is a given function of r. That function expresses the smoothness or self-

correlation of the flow in the y direction(s). In situations where ¢ is a

slowly decreasing function, we will see that the diffusion in x acquires
anomalous properties.

We shall also denote by E the expectation over the path of the
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Brownian motion y(¢). We want to compute the mean square displacement
of the particle (x(¢), y(¢)) at time ¢. The main quantity is thus
> t t
Bty = (E([ ot ds [ ot as))

z s e~ P26 —s)
=2 fo ds -[0 ds fRd(p(y) m dy

g~ 1¥12s

=2 fo (t—s)ds JW(P(J/) Wdy

3. ASYMPTOTIC BEHAVIOR OF (3) FOR t—>

We shall consider two different situations.

First Situation. ¢ is integrable. If d=1, when s— oo, e 177%
tends to 1, and we obtain directly

g8 1
CE(0)) ~5 s ([ ot ) @

On the other hand, if d=2, it is easy to obtain
5 1
B~ o dy ) tlog: (5)

If d>3, we observe that when ¢ tends to oo,

t oo 1 dy
L ds de @(y) (25)7? dy — a4.(d—2) J o(y) MTE

where o, denotes the area of the unit sphere of RY and we obtain

2 d
B ~ s (f w(y)mf——z) : (6)

Second Situation. ¢(|y|)~C/|y|* for |y|—o0. Here C is a
certain constant and « is a positive exponent such that

O<a<1 if d=1

. (7
O<a<?2 if d=2
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We want to study for §=0 or 1 the asymptotic behavior of

o v

Iy(t) = fol s” ds JW ?(y) (2ms) dy

' PR (12 91" (s Ly
| p-u2yg e i)y e y d
fo $ow fm 2n) 7 bR Y

' e‘IyIZ/Z C
| sF s | ——p——d
fo s sfw 2n)7 1y*

‘ —2 g
Y N A
b o] GemnE KD ®)

where K(r)=r"p(r)— C and tends to 0 if r tends to infinity.
Under the hypothesis (7), the first integral in (8) is finite and has the
value

fL B2 —rY2

e d—1—
s S “ g
T+ p—a2 0 L o’ '

and the second integral of (8) has the form

J sP=*2qa(s) ds

0

where a(s) tends to 0 if s » o0. From these remarks and from formula (3),
we obtain

2 2Co, ® 2 d—1—a 2—ap2
<E(X(t) )> ~ (1 . 05/2)(2— a/z)(zn)d/z <J‘0 e / r dr) t / (9)

In this case, we see that we can obtain any anomalous superdiffusive
behavior for all possible exponents between 3/2 and 2 if d =1, and between
1 and 2 if d=2.

4. ANALYSIS OF THE HIGHER MOMENTS

To analyze the higher moments, we shall assume that w(y) is a
Gaussian random field with correlation ¢ as in (2). We have

CE(x(1)™)> = 2N)! jo ds, jol ds, - - f:"” ds,n

x (a(y(sw)) o(¥(say—1) - 0(¥(s1))7))  (10)
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and the average over the Gaussian random field is given by the usual
formula

N
> [T e(y(si)—y(s;)1) (11)
n> - >iy k=1
(J1ewes JN)
12 Jlses IN> N

We shall also assume that we are in the second situation,

€ —u.(b)
||

with restrictions (8) on the exponents.
If we replace all the ¢ in (11) by the asymptotic forms ¢, and define
s;=tg; and y(to;)= \/; z(o;) with a new Brownian motion z, we obtain

o(1yl)~

[(ZN)! jol dosy j:” doyy oo joz do,

<E{Y IN] V.(12(0,) —z(o,k)i)ﬂ (- (12)

The expression in brackets will be computed exactly in the next section and
in particular will be proven to be finite. Moreover, we shall estimate the
characteristic function

F(&, 1) = (E(exp[Ex(1)]))

It is very easy to obtain a bound on F(¢, t) by a function with a finite
radius of convergence. We want to obtain a bound by a function with an
infinite radius of convergence. We shall now assume that the correlation
function is

C
cp(y)zW, O<a<l if d=1, O<a<2 f d=2

We know from (10)-(12) that

1 OIN a2
CE(x(£)™> = (2N)! Cth(z_a/z)Nf dGzNJ 2 Ao, J do |
0 0 0

1
3
x %Eﬂy(an)—y(aﬁ)v---|y(oiN—y(ajN)|“f (13)
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where I and J are varying over the sets of indices
I={i,> - >iy}
J={jy-jn} with i, > j for all &
IuJ=(1,.,2N)

We want to compute precisely this expectation.
For a fixed partition 7, J this is

1
o
by + g+ e by ]

1 -2
Hduij do j do
j o Nl T P IR oY

y ( | ) p( 4 al? )
exp{ - ——— ) --exp| - ———
2|0, ~0; 2|GjN+1_0jN|

X [27'5(0'1‘1_0'1'[;1)"'(Zn)(UjN+1_‘°'jN)]_d/2 (14)

One of the indices j, is 1: suppose that j, =1 and reorder the indices j, by
increasing order so that now j,=1< --- < j,. We rescale
Wy 1 =0 1(0 11 —0,)"

and we denote

[v|%/2
Komsup ([ o Gy ) ()

so that we finally obtain a bound of a term like (14) by

1
+1_0'jN)a/2"'(0'2_01)u/2

K jol dosy fom oy o J: doy (16)

Call y=a/2. An integral like (14) can be written as

o
f J ij;_;_l3 dP13+1J (l—p)vdph
73

L pl v dp
P ]2 l—y _—1
f Py Apy (1 sz)y J‘ P> o (1—py)

Let us compare this integral with the integral with the same j, except
that a particular j, has been changed into j/ = j,— 1 (we assume that this
is possible or that j,_; < j,—1). This means that we would change

Ji—1=(U=1)y

LPj

- 1—2—(—1)y
o A=p dp;,-- fp,, i dpj,— 1
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into
2~ (—1)y
S
P dpy,- f L,
f Ji Ji (I_Pj,fl)y Ji—1

The first integral is

1 LU= U=y 1rd—y)
Ji—=t=(U=1)y I+ 1-1y)

and the second integral is

I'(,—=1-(=1)y) I'(1 —y)
(=) T (=)

These are equal. It is then sufficient to consider an integral like (14)
for jy=1<j,=2< --- < jy=N, for which it is equal to

1 dp lpl_yd 1 p2-2v p(l\L 2)(1—y)
1 J 2 sz’ 3 s - j dpy_,

Yo (L—=pi) 0 (1=py)" o (1—p3) (t=py_1)

N—2)(1 —y 1 N—=2)(1— 2
onp( L=+ dpJp‘ W=n+2 gy

o1
N—=2)1-p)+N+1
XJ p(ZN =) + dPZN
0

T
I+

T
(1 +

—

1—'}))N_1 N+2 1
N—1)(1-y)) kll k+(N=2)(1-7)
-y~ F(N=2)(1—y)+2)
N=1){1=p) I((N=2)1 —y)+ N+3)

The number of partitions (I, J) is

I'(1/2+N)
IN—1)2N -3 =N
( J2N=3)-- r(1/2)
so that finally
N 2 2—a/2 NM
CEG(P™)> < (2N)! 2C7K, 1) =

TA2+N)IT(N=2)(1—y)+2)
F(1+(N—1)(1— NIUN=2)(1—y)+ N+3)

(17)
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Let us now define the generalized hypergeometric function:

T'(1/2+ N) I(N(1 —9) +2y)
F(NQ—=y)+y) I(N2—y)+2y+1)

D (x)=y xV

Nz=0

Then we have the upper bound in the sense of majorant function
theory:

(B(exp[ex(n)])) <1 ®,Q28CK, 2 I(1—-y))  (18)

1
(172) I'(1 =)

where y =a/2. Because y =o/2 < 1, it is clear that @, has an infinite radius
of convergence, but it is not a classical hypergeometric function. The sign
< means that each Taylor coefficient of the first member is less than the
corresponding Taylor coefficient of the second member.

5. ESTIMATION OF THE DISTRIBUTION OF x(¢t)

From (14), one can deduce an asymptotic bound of the rescaled
distribution of x(t). More precisely, the second member of (17) is bounded
by

CEx(e)™)) (772 (A, )Y T(L+7)N =7 +3) (19)
where A4, . is a constant depending only on d, y, and C, namely,
Agye= LA —7)]2 202K (2 =) 71472 (149) V277
Let us now define the rescaled variable

2
wo=(=i)

Then, using (19), for large y, the distribution probability of y(¢) is bounded
from above by

Prob(y(z) € dy) < Bexp(—y"/1 1) y= 1+ V201 gy

Remark. Proof that K, is bounded. We consider

1 e w2 1 e W2
f—_‘z—d/'z'd”f TR L
|w— o] (27) w—wl <r |W—0]*(27)
1 e-lPe

4
" Jru—wm w—vl* 20)7
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The first integral is less that Cr?~* and can be made <e¢ for r sufficiently
small. Then in the second integral, the integrand tends to 0 if |w| — o0,
while it is dominated by the integrable function

1 o2

-

and by the Lebesgue theorem can be made less than ¢ for |w| large enough.
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